This is homework 3, due Monday, October 17, at the beginning of lecture.

Recall the Baire category theorem: The intersection of countably many dense open sets in a complete metric space is dense. Recall that a set is one that can be written as the intersection of countably many open sets.

Show that in a complete metric space, the intersection of countably many dense sets is again a dense set. Is the union of two sets again a set?

Show that is not a subset of .

Since is countable, we can enumerate it as . For let

Note that each is open, that for each , that , and that (for each ) the sum of the lengths of the intervals that make up is at most .

Does this mean that ? If yes, please provide a proof. If not, describe as concretely as possible an irrational number that belongs to this intersection.

Recall that a nowhere dense set is a set whose closure has empty interior: . A set is meager (or of the first category) iff it is the union of countably many nowhere dense sets. Given sets and in , we say that iff their symmetric difference is meager. For example, the Cantor set is nowhere dense.

Show that is an equivalence relation.

Show that if is meager, then any subset of is also meager. Show that the union of countably many meager sets is again meager.

Show that the Baire category theorem implies that any nonempty open subset of is non-meager.

Show that if is open, or closed, or a set, or a set (a countable union of closed sets), then there is an open set such that .

The Cantor-Bendixson derivative of a closed set is defined by

Since is closed, . We can iterate this operation, and form , Note we have

We can go even further, by letting and then continuing, by setting , etc.

Give examples of closed subsets of such that but , or but , or or but . Can be the first empty “derivative”? How about ?

Check that if and are compact, then so is as a subset of .

Show that if is a subset of that is both open and closed, and , then it must be the case that .

This entry was posted on Friday, October 7th, 2011 at 4:18 pm and is filed under 414/514: Analysis I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Georgii: Let me start with some brief remarks. In a series of three papers: a. Wacław Sierpiński, "Contribution à la théorie des séries divergentes", Comp. Rend. Soc. Sci. Varsovie 3 (1910) 89–93 (in Polish). b. Wacław Sierpiński, "Remarque sur la théorème de Riemann relatif aux séries semi-convergentes", Prac. Mat. Fiz. XXI (1910) 17–20 […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is that the existence of a nonprincipal ultrafilter does not imply the existence of a Vitali set. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${ […]

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

Equality is part of the background (first-order) logic, so it is included, but there is no need to mention it. The situation is the same in many other theories. If you want to work in a language without equality, on the other hand, then this is mentioned explicitly. It is true that from extensionality (and logical axioms), one can prove that two sets are equ […]

$L$ has such a nice canonical structure that one can use it to define a global well-ordering. That is, there is a formula $\phi(u,v)$ that (provably in $\mathsf{ZF}$) well-orders all of $L$, so that its restriction to any specific set $A$ in $L$ is a set well-ordering of $A$. The well-ordering $\varphi$ you are asking about can be obtained as the restriction […]

Gödel sentences are by construction $\Pi^0_1$ statements, that is, they have the form "for all $n$ ...", where ... is a recursive statement (think "a statement that a computer can decide"). For instance, the typical Gödel sentence for a system $T$ coming from the second incompleteness theorem says that "for all $n$ that code a proof […]

When I first saw the question, I remembered there was a proof on MO using Ramsey theory, but couldn't remember how the argument went, so I came up with the following, that I first posted as a comment: A cute proof using Schur's theorem: Fix $a$ in your semigroup $S$, and color $n$ and $m$ with the same color whenever $a^n=a^m$. By Schur's theo […]

It depends on what you are doing. I assume by lower level you really mean high level, or general, or 2-digit class. In that case, 54 is general topology, 26 is real functions, 03 is mathematical logic and foundations. "Point-set topology" most likely refers to the stuff in 54, or to the theory of Baire functions, as in 26A21, or to descriptive set […]